Bicnux Yepracwvroeo nayionanvsnozo ynieepcumemy imeni boeoana Xmwenvrhuyvkoeo

Conclusion. Modeling the behavior of pseudo-elastic-plastic material with large plastic
deformations requires the use of nonlinear mathematical models that could more accurately describe
and predict the behavior of such a body. The behavior of the locally loaded weakened strip of pseudo-
elastic-plastic material under its non-stationary loading is modeled in the work. The authors used a
nonlinear phenomenological model of the material to solve the above problem, which allows to
describe a number of experimental data on different samples under different conditions. A comparison
of the results obtained in geometrically linear and nonlinear formulations with large plastic
deformations. Numerically compared intensity fields at symmetric and asymmetric loading It is
established that at plastic deformations up to 6% (small deformations) the discrepancy of results in
points of localization of deformation does not exceed 5%. With increasing values of plastic
deformation (more than 7%, large deformations), the discrepancy of the results can increase
significantly and in the vicinity of the possible creation of the neck to reach 20%.
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NUMERICAL-ANALYTICAL METHOD FOR THE PROBLEMS OF
ENVIROMENTAL SAFETY

In problems of modeling pollution of water and atmospheric resources of the Earth’s
ecosystems, models of potential flow are often used. Recently, considerable attention has also been
paid to protecting metropolis from atmospheric pollution with acoustic noise. Very often, without
focusing on local flow features, the Laplace equation is used to describe the potential equation motion
of a fluid. Acoustic problems are modeled based on the Helmholtz equation.

In the work presented below, the features of the numerical-analytical method for the Helmholtz
and Laplace equations are considered. The sound potential is a rapidly oscillating function given at
the boundary of the computational domain. In addition, the numerically-analytical method
peculiarities are presented for the Laplace equation that uses the expansion of the boundary condition
in a Fourier series in eigenvalues of the Sturm-Liouville problem. Despite the fact that the data
presented in the work were obtained for canonical domains, the scheme of the method implies the
possibility of using it for domains with an arbitrary curvilinear boundary. The numerical-analytical
method proposed in the paper allows for low computational costs to solve numerically the problems
for the Laplace equation and the acoustic equations. The results of the research conducted can be
used as new information technology to address the environmental security challenges of water and air
resources.

Keywords: Computational modeling, Numerical method, Geo-environmental monitoring.

Introduction

One of the major problems of today is the problem of preventing pollution of the Earth's
water and air resources. It is directly related to the geo-environmental monitoring of the
planet. To prevent global man-made disasters, scientists are developing mathematical models
that describe the processes of occurrence and spread of pollution in aquatic environments.
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There is also the problem of protecting the environment from noise pollution by helicopters.
Recently, considerable attention has been paid to the development of information technologies
in the field of environmental safety. In particular, much attention is paid to the study of
processes of pollution of water resources and the atmosphere, as well as to the acoustic
pollution (noisiness) of megapolices. In civil aviation [1], in the operation of helicopters, very
often unforeseen situations occur that result in local environmental disasters that lead to
undesired environmental pollution.

It 1s known that in most situations, the main equation for modeling fluid motion is the
Laplace equation [2], [3]. Modeling of aerodynamic noise, helicopter noise, is performed on
the basis of the equation of propagation of small perturbations from a thin wing [4].
Numerical methods and algorithms for its solution are constantly being improved. Numerical
circuits are being searched for, allowing smaller computer resources to achieve the desired
result. In this paper, we consider a numerical method for numerical modeling these processes.
The numerical-analytical method is an implicit analogue of the finite-difference method: in
the finite-difference method, all derivatives are a priori expressed in terms of values in the
calculation nodes, and in the numerical-analytical method they are expressed implicitly
directly during the solution of a specific differential equation, a boundary-value problem.
Thus, this method allows you to take into account the specifics of the differential operator the
behavior of the function on the boundary.

In a number of problems of hydromechanics, one has to deal with the Laplace equation:

Af =0, (1)
where feC*(4), AcR’.

If the problem is solved in the canonical domain, for example, in a rectangular 2-
dimensional domain, then the desired solution based on the Fourier method is represented as a
trigonometric series in eigenvalues functions. A similar situation holds for the Helmholtz
equation. The Laplace and Helmholtz equations are to some extent similar in structure: on the
basis of the classification existing in mathematical physics, both equations are elliptic
equations. They are particular cases of the general Poisson equation. The use of the numerical
- analytical method for the Helmholtz equation was considered [5] for cases of moderate
values of the wave number. In this paper, we consider the behavior of this circuit for large
wave number.

The aim of this work is to study and develop the application of the numerical-analytical
method for boundary-value problems for which a rapidly oscillating function is given at the
boundary. The study is based on the Helmholtz equation. The numerical solution of the
Laplace equation is constructed in the same way as the Helmholtz equation, but using some
modification.

1. Application of the method for the Helmholtz equation. The case of a rapidly
oscillating function at the boundary

In [6], a scheme for applying the numerical-analytical method for the Helmholtz
equation was considered using the example of a two-dimensional domain [a,b]x[c,d]:

Af +k2f =0 (2)
f.(x,»)=0, x=0, f (x,y)=0, x=a; 3)
_.fy(x’y):V;)’ y:()’ _fy(x’y):()’ y:b (4)

In this case, the sound potential, following the idea of the method, is represented in the
form:
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FOI=FOD* 1,000 =30+ f, ()= +

1
+§fm(yo)(y—yo)3 +o(y=y)"), (5)
where f(vy), f,(»), f,,(3)s f,,(»,) unknown row expansion coefficients. We denote

X = f(yo)’ Xy = fy(y(])’ X3 = fyy(y(])9 Xy = fyyy(y(]) .
Applying a 4-point scheme, we obtain the following recurrence relations [5]:

o 20570 +2/(A)-25/(24)) -k

’ 0.5A%* +1 ©)
¥, = (2/(0)-3/(A) - 32Azx3)-k2 — X )
—5A%k
2, 19 5
F0)= f(A)=2.5x,A" +— A’x,
X, == : ®)
A
x, = f(0)+3A-x, —4.5A% - x, +4.5A° - x, . 9

Approximations of the third order are quite enough for this method so that the
calculated interval [0;1] , broken with a step A=0,02, already gives us order accuracy

107 —-10"*. However, the range of wave numbers k& was 0<k<8. In this case, the
calculation was performed for a little more than one wavelength. How will the method behave
if 3 or 5 wavelengths are placed on the calculation interval? In this problem, this corresponds
to order wavenumbers k =20,30. The numerical calculation showed that the step A=0,02
here will be too large: if you do not change it, then, starting with y = 0,3, a solution shift is
observed according to this numerical method in comparison with the analytical solution by
the Fourier method.

If we grind the step A=1/120, then for k=20 (a little more than 3 wavelengths) we
get results that coincide with the analytical solution with good accuracy. In Fig. 1, the dashed
curve corresponds to the solution according to the numerical analytical method, the solid line
is the exact solution according to the Fourier method. For £ =30 (about 5 wavelengths) the
step A=1/120 must be ground to A=1/180. Nevertheless, we see that there is a slight
deviation at the end of the calculation interval of the numerical solution according to the
method from the analytical solution.

In terms of accuracy, the solution here is slightly inferior to the solution for small values

k [5].
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Fig.1 Sound pressure potential for wave numbers & =20, 30.

2. Application of the method to the Laplace equation

Let we have a rectangular region [—a,a]x[—h,h] symmetric with respect to the origin in
which the Laplace equation (1) is solved. At the boundary of the region, the following
boundary conditions are specified:

f=0, x=%a, (10)
f:AOcos(2n+l)nx, y==h, (11)
2a

where 4, —is some constant.
If we assume that at the boundary y =+h the function f depends only on x, then the
Laplace equation takes the form:

S =0. (12)

And this means that f=Cx+C,, where C,, C, are some integration constants of

Cn+1)r

equation (12). But this contradicts the fact that the function f = 4, -cos x 1s at the

given boundary. Therefore, the direct application of the method by analogy with the
Helmholtz equation does not work.

It is possible to solve the arisen problem if we know what structure the desired solution
should be. Based on the Fourier method, it is easy to obtain:

fx,y)=D 4,cosh,x-(Ce™ +D,e""), (13)

n=0

where A, = 2n+1n

2a
However, let us pay an attention to expression (13). If we differentiate both sides of (13)
by a variable y, we obtain:

fo=ht. (14)
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Let us return to the numerical-analytical method. Replace in the Laplace equation o

2
by k"f:

fL+Af=0. (15)

In appearance, this equation exactly matches the Helmholtz equation, with one
exception, which is k° instead of ki here. Therefore, we can further use the scheme for

applying the numerical-analytical method for the Helmholtz equation (2), replacing k> by
5

L _(05/(0)+2f(A)~25/(2A) -1,

’ 16
3 0.5AA,7 +1 o

a— —_— 2 . 2_
, _2/O-3/4) 33A2 X) A, acl (17)

—5A°L,
2 19 3
FO=f(8)=2.5x07 4 A'x,

X = : , (18)
X, = £(0)+3A-x, —4.5A% - x, +4.5A° x, . (19)

The numerical calculation showed the same degree of convergence of the solution to the
analytical solution (Fig. 2). The use of substitution (14) allows us to generalize the scheme of
using the numerical-analytical method for the Laplace equation and a function y arbitrarily

defined on the boundary.
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Fig. 2. The flow potential for n=35, 10
3. A generalization of the application of the numerical analytical method for the
Laplace equation
Let not one mode (11), but some arbitrary function y be given on the boundary of the

region [—a,a]x[—h,h]:

flexh) =y, (20)
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which satisfies the Laplace equation. The boundary condition (10) remains the same.
Applying the scheme of the Fourier method, we obtain (13). The set of eigenvalues A,
depends on the type of boundary condition. For a fixed value y =1k at the boundary, the
two-dimensional function f(x,y) is transformed into the usual trigonometric series:

()= A cosh,x =y, +y, +..+y,, A =Ce " +D e, (21)
n=0

Expression (21) is a trigonometric series composed of eigenfunctions obtained based on
the solution of the Sturm-Liouville problem. It is not difficult to carry out rationing in such a
way as to obtain an orthonormal closed system of functions. Therefore, according to the
Riesz-Fisher and Steklov-Parseval theorems [6], expression (22) is a unique representation of
the function in the form of a Fourier series in terms of the eigenfunctions of the Sturm-
Liouville problem.

Now back to the function f . From the theory of linear differential equations it is known
that a linear combination of individual solutions of a linear differential equation is also a
solution to this differential equation. The Laplace equation is linear, therefore, if we present
the desired solution in the form of a superposition of n solutions f;:

f=31. @)

then this superposition for each i will also be a solution to the Laplace equation:

Af, =0. (23)
This statement allows us to break down the original task for the function f onthe n+1
task:
Af; =0,
f,=0, x==a, (24)

fi=v,, y==h, i=0,n.

It is easy to see that the obtained boundary-value problem (24) for each fixed value i
coincides with the problem described above for a strongly oscillating function f', for which
the scheme for applying the numerical-analytical method has already been considered.

Comment. Such a simple implementation of the scheme of the numerical analytical
method is possible only for the cases of linear equations considered in the paper. If we take
the quasi-linear equation [7], then the analytical representation of the solution in the a
recursive form will not work: the nonlinear system of equations that is formed as a result of
applying the numerical-analytical method has to be solved numerically.

4. An example of the application of the method for quasi-linear equations

This section provides a solution to the problem of transonic flow around a plane wing
profile. The equation describing the flow around a wing profile is a quasilinear equation:

18



Bicnux Yepracwvroeo nayionanvsnozo ynieepcumemy imeni boeoana Xmwenvrhuyvkoeo

22
M

1

1
[1—W+g-(y+l)fé]féé— fon =0, (25)

1

in dimensionless coordinates = x/c, n=Ay, where x, y — the Cartesian coordinates along
and across the section of the blade, respectively. The coordinate n displays the surface shape

of the cross section of the blade. Taking into account accepted notation, the boundary
condition on the surface of the blade is written in the form:

n=g(@),0<s<Lf, =6g,,

We turn to the application of the method. We believe that f e C*([0;1]x[0;1]). Then it
can be represented as a Taylor series in a neighborhood of an arbitrary point (&,,5,):

SF&m) = S (Soomo) + 1 (S0:10)(E =6 o) + 1, (G051 (17,71 ) +
+%[fg§(‘§o’77 o)(é' _go)2 + 2f§,;(§0’77 o)(gi —50)(771- _770) +fm7 (50’77 o)(ni _770)2]+ (26)
* o(max{(fl. - go)za(gi —fo)(fh _770),(771' _770)2}), i=15.

Here the point (&,,7,) is some fixed point of profile, close to (&,,17,) (Fig.3).

/\,,7

0 (60,770)
\1 R
/ i

Fig. 3. Calculation pattern on the surface of the wing profile

Calculations will be carried out along the upper edge of the wing. We select five points
at the beginning of the profile on the left with coordinates(§;,n,), i=1,5. We regard that
(&,,1m,) is the six point, that is situated on the upper boundary of wing just after the first five
points. System (4) consists of five equations with six unknowns f(&,,7,), VAER/NE

f(éo’no)’f‘g(go’rlo)’ f‘éﬂ (éo ’T]O)’f;m (éoano) :
As (§,,n,) 1s an arbitrary point, then equation (1) should be performed for it
automatically, i.e.

[1- A;12 +e-(y+ 1)/[5 (60’770)]f§§ (§O,Uo) _;;[_sz,m (60,770) =0 (27)
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The system of equations (26)-(27) is closed relative to the indicated unknowns if we
omit the second-order quantities of smallness. The data of calculating the pressure coefficient
on the surface of the blade are shown in Fig. 4-5.

Close agreement is obtained with the calculated data of [8] in the case of a helicopter
rotor blade remote from the end of the flow around the blade. At M > 0,9 the nucleation of a

weak shock wave is observed (Fig. 3), which is realized in the form of a small jump literally
immediately after £=0.5.

As you approach M =1 (M =0.98;0.99) it is noticeable instable behavior of C ,

(fig.5). This is the cause of the instability of the flow itself. Since equation (25) changes type
from elliptic to hyperbolic on a shock wave, it affects the numerical algorithm, where the
series expansion was assumed to be continuous. Here, the method reveals an interesting
regularity of the flow: the so-called “spurious vorticity”. In this zone, the method works stably
even with unstable flow behavior.

The study of shock wave arising is very import in safety of flight air vehicles. So the
numerical-analytical method can be used as an information technology for environment.

Conclusions

1. The paper considers the algorithm for applying the numerical-analytical method for
the Laplace and Helmholtz equations for the case of strongly oscillating functions.

2. A comparison is made of the numerical convergence of the method with an analytical
solution.

3. The features of setting the grid domain, the choice of the calculation step for the
optimal use of the method scheme were studied.

20



Bicnux Yepracwvroeo nayionanvsnozo ynieepcumemy imeni boeoana Xmwenvrhuyvkoeo

4. The behavior of the helicopter blade in the mode of nucleation of a shock wave, the
occurrence of flutter of the  blade is studied. The calculation data can be used in the design
of information flight control systems for aircraft, helicopters in order to prevent air crashes -
local environmental incidents.

5. The numerical-analytical method proposed in the paper allows for low computational
costs to solve numerically the problems for the Laplace equation and the acoustic equations.
The results of the research conducted can be used as new information technology to address
the environmental security challenges of water and air resources.
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JYK’SIHOB Ilerpo BonomumupoBuy,
KaHAUJAT Qi3NKO-MaTeMaTUYHUX HayK, CTapiinii HaykoBwid criBpoOiTHUK HAH Ykpainu, gomeHr,
APB, IAT, HTTVY “KIII”
YUCEJbHO-AHAJITUYHUI METOJ PO3B’SI3AHHS 3AJJAY 3AXUCTY
OTOYYIOUYOTI'O CEPEJOBHILA

Anomauin. Y 3a0auax 3 MOOemo8aHHs 3a0pPYOHEHHs 600U, ammocgepu 3emni uacmo
BUKOPUCMOBYIOMb NOmMeHyianvii mooeni meuii. Hewjooasno 3nauny yeazy cmanu npuoisimu 3axucmy
MEMPONONICI8 8i0 aKYCMUYHUX UYMOBUX 3a0pyOHenv. Yacmo, He oxycyrouu yeazy Ha JTOKATbHUX
pucax meyii, 01 O0AHO20 MOOENI08AHHSA BUKOPUCMOBYEMbCA pisHanna Jlannaca, ske onucye
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nomeHyianvHull pyx piounu. AKycmuuni 3a0a4i MOOenonmscs Ha 0CHOGI pieHsHus I envbmeonvya. YV
OaHiti pobomi po3eaHYmo 0CoOONUBOCIIT GUKOPUCTHAHHS YUCETLHO-AHATIMUYHO20 MeMOOY 0I5l PIGHAHb
Jlannaca ma Iervbmeonvya.. 36yKosuil nomenyian € weuUoKo OCYUTIOIOYOI0 (DYHKYIEI, 3A0aH0I0 HA
epanuyi po3paxynroeoi obaacmi. JJo mozo s, npeocmasieHo 0coONUBOCHI YUCETbHO-AHATIMUYHO20
Memooy 0as pieHAuHA Jlannaca 3 UKOPUCMAHHAM DO3GUHEHHS 2panuyHoi ymosu 8 pao Tetinopa 3a
enanumu Gynxyismu 3aoaui [lmypma-Jliysinns. He 3easicaiouu na me, wo Oawi, npucymui y Oauiti
pobomi, ompumani 01 KAHOHIYHUX obracmell, cxemMa MemoOyMA€E HA Y8a3i 1020 GUKOPUCIAHHS OJis
008INbHOI KpUBONIHITIHOL epanuyi oonacmi. YucenvHo-anarimuinuil Memoo, 3anponoOHO8AHUL 8 OaHIl
pobomi, 003608€ MATUMU PO3PAXYHKOBUMU 3AMPAMAMU YUCETLHO PO38 A3V6amu 3a0ayi 015 PIGHAHHS
Jlannaca i axycmuuni pisusnus. Pesynemamu oanux Oocniodicenb Mmooicyms 6ymu UKOPUCMAHI Y
AKOCMI HOBUX THHOPMAYTIHUX MEXHON02IT OIS 3AXUCHY OMOUYIOH020 CEPedosUd.

Mema cmammi. Memolo cmammi € 6UBYEHHA MA PO3IBUMOK 3ACMOCYBAHHA YUCETbHO-
AHATIMUYHO20 MemoOy OJisl ePAHUYHUX 3a0a4 31 WEUOKO-OCYUTIOOYUMU (DYHKYIAMU, 5KI 3A0aHi Ha
epanuyi oonacmi.

Bucnosku. YV oaniti pobomi 3anponoHo8ano aneopumm 3acmocy8anHs YUCeTbHO-AHANIMUYHO2O0
Memody 075 pieHans Jlanraca ma Ienvmeonvya y GUnOKY weUOKO OCYUIOIOYUX DYHKYIL HA Spanuyi.
Buxonano nopisuanns 30i0CHOCII 4UCETbHO2O PO36’A3KY 3a0auu 3 aAHANIMUYHUM. Bcmanosneno
ONMUMANbHY KIibKICMb po30umms CimKu po3paxyHKo8oi oonacmi O0nsi 00CASHEHHS ONMUMAIbHOL
30IHCHOCE YUCETLHO20 PO38 A3KY 00 aHanimuunoo. Po3é’s13ano 3a0auy GUHUKHEHHS 36YKOB020 NOJIA
OlIs1  KpUMuuHo20 Oianasony oOmikanus Jaonami, O0e GUHUKAIOMb YOapHi X6Ull, Wo MOJNCYMb
cnpuduHumuy pyunyeanns aonami. Lle docniojcenus mooce cmamu y Ha2o0i ekonociynoi besnexu
noavomie Ha eenikonmepax. Ak nokazanu 0ami po3paxyHKy, 4UCETbHO-AHATIMUYHUL MeMO0 30aMHULL 3
NOPIBHAHO MAUMU 3aMPAMAMU PO38 A3amu epaHuyHi 3a0adi 0ns pienanna Jlannaca ma I enbmeonsvya.
Pesynomamu 0anux 00cniodxcenb CnpsiMoO8aHi HA PO36 SA3AHHS 3A0ay eKONO2IUHOL be3neku 600HUX ma
NoGIMpsHUX pecypcié 3emii.

Knrouosi cnoea: xomn’romepre MoOeno8anus, YUCETbHULL MemoO, eKON02TYHUL MOHIMOpiHe
OMOUYI04020 cepedosuLya.
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