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QUANTUM ECONOPHYSICAL PRECURSORS OF CRYPTOCURRENCY
CRASHES

This article demonstrates the possibility of constructing indicators of critical and crash
phenomena in the volatile market of cryptocurrency.

The possibility of constructing dynamic measures of complexity as quantum econophysical
behaving in a proper way during actual pre-crash periods has been shown. This fact is used to build
predictors of crashes and critical events phenomena on the examples of all the patterns recorded in
the time series of the key cryptocurrency Bitcoin, the effectiveness of the proposed indicators-
precursors of these falls has been identified. From positions, attained by modern theoretical physics
the concept of economic Planck’s constant has been proposed.

The theory on the economic dynamic time series related to the cryptocurrencies market has
been approved. Then, combining the empirical cross-correlation matrix with the Random Matrix
Theory, we mainly examine the statistical properties of cross-correlation coefficient, the evolution of
the distribution of eigenvalues and corresponding eigenvectors of the global cryptocurrency market
using the daily returns of cryptocurrencies price time series all over the world from 2013 to 2018.

The result has indicated that the largest eigenvalue reflects a collective effect of the whole
market, and is very sensitive to the crash phenomena. It has been shown that both the introduced
economic mass and the largest eigenvalue of the matrix of correlations can act like quantum
indicators-predictors of falls in the market of cryptocurrencies.

Keywords: Cryptocurrency, Bitcoin, complex system, measures of complexity, crash, critical
events, complex networks, quantum econophysics, Heisenberg uncertainty principle, Random Matrix
Theory, indicator-precursor.

Introduction

The instability of global financial systems with regard to normal and natural
disturbances of the modern market and the presence of poorly foreseeable financial crashes
indicate, first of all, the crisis of the methodology of modeling, forecasting and interpretation
of modern socio-economic realities. The doctrine of the unity of the scientific method states
that for the study of events in socio-economic systems, the same methods and criteria as those
used in the study of natural phenomena are applicable. Significant success has been achieved
within the framework of interdisciplinary approaches and the theory of self-organization —
synergetics. The modern paradigm of synergetics is a complex paradigm associated with the
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possibility of direct numerical simulation of the processes of complex systems evolution,
most of which have a network structure, or one way or another can be reduced to the network.
The theory of complex networks studies the characteristics of networks, taking into account
not only their topology, but also statistical properties, the distribution of weights of individual
nodes and edges, the effects of dissemination of information, robustness, etc. [1-4].

Complex systems are systems consisting of a plurality of interacting agents possessing
the ability to generate new qualities at the level of macroscopic collective behavior, the
manifestation of which is the spontaneous formation of noticeable temporal, spatial, or
functional structures. As simulation processes, the application of quantitative methods
involves measurement procedures, where importance is given to complexity measures. I.
Prigogine notes that the concepts of simplicity and complexity are relativized in the pluralism
of the descriptions of languages, which also determines the plurality of approaches to the
quantitative description of the complexity phenomenon [5]. Therefore, we will continue to
study Prigogine's manifestations of the system complexity, using the current methods of
quantitative analysis to determine the appropriate measures of complexity.

The key idea here is the hypothesis that the complexity of the system before the crashes
and the actual periods of crashes must change. This should signal the corresponding degree of
complexity if they are able to quantify certain patterns of a complex system. Significant
advantage of the introduced measures is their dynamism, that is, the ability to monitor the
change in time of the chosen measure and compare it with the corresponding dynamics of the
output time series. This allowed us to compare the critical changes in the dynamics of the
system, which is described by the time series, with the characteristic changes of concrete
measures of complexity. It turned out that quantitative measures of complexity respond to
critical changes in the dynamics of a complex system, which allows them to be used in the
diagnostic process and prediction of future changes.

Cryptocurrency market is a complex, self-organized system, which in most cases can be
considered either as a complex network of market agents, or as an integrated output signal of
such a network — a time series, for example, prices of individual cryptocurrency. The research
on cryptocurrency price fluctuations being carried out internationally is made more complex
by the interplay due to many factors — including market supply and demand, the US dollar
exchange rate, stock market state, the influence of crime and the shadow market, and fiat
money regulator pressure — that introduces a high level of noise into the cryptocurrency data.
Moreover, in the cryptocurrency market, to some extent, the blockchain technology is tested
in general. Thus the cryptocurrency prices exhibit such complex volatility characteristics as
nonlinearity and uncertainty, which are difficult to forecast and any results obtained are
uncertain. Therefore, cryptocurrency price prediction remains a huge challenge.

Unfortunately, the existing nowadays classical econometric [6-8] and modern methods
of prediction of crisis phenomena based on machine learning methods [9-16] do not have
sufficient accuracy and reliability of prediction.

Thus, lack of reliable models of prediction of time series for the time being will update
the construction of at least indicators which warn against possible critical phenomena or trade
changes etc. This work is dedicated to the construction of such indicators — precursors based
on the theory of complexity.

In this paper, we consider some of the informative measures of complexity and adapt
them in order to study the critical and crash phenomena of cryptomarket.

The paper is structured as follows. Section 2 describes previous studies in these fields.
Section 3 presents classification of crashes and critical events on the Bitcoin market during
the entire period (16.07.2010 — 08.12.2018). In Section 4, new quantum indicators of critical
and crash phenomena are introduced using the Heisenberg uncertainty principle and the
Random Matrix Theory.
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Analysis of previous studies

Throughout the existence of Bitcoin, its complexity became much larger. Crashes and
critical events that took place on this market as well as the reasons that led to them, did not go
unheeded. We determined that there are a lot of articles and papers on that topic which we
will demonstrate.

Donier and Bouchaud [17] found that the market microstructure on Bitcoin exchanges
can be used to anticipate illiquidity issues in the market, which lead to abrupt crashes. They
investigate Bitcoin liquidity based on order book data and, out of this, accurately predict the
size of price crashes.

F. Bariviera [18] demonstrates the dynamics of the intraday price of 12
cryptocurrencies. By using the complexity-entropy causality plane, authors discriminate three
different dynamics in the data set. Another paper [19] compares the time-varying weak-form
efficiency of Bitcoin prices in terms of US dollars (BTC/USD) and euro (BTC/EUR) at a
high-frequency level by using Permutation Entropy. Their research shows that BTC/USD and
BTC/EUR markets have been demonstrating more information at the intraday level since the
beginning of 2016, and BTC/USD market has been slightly more efficient than BTC/EUR
during the same period. And moreover, their research shows that with the higher frequency
we have less price efficiency.

Some papers like this one [20] demonstrate how recurrence plots and measures of
recurrence quantification analysis can be used to study significant changes in complex
dynamical systems due to a change in control parameters, chaos-order as well as chaos-chaos
transitions. Tiago Santos et al. [21] discuss how to model activity in online collaboration
websites, such as Stock Exchange Question and Answering portals because the success of
these websites critically depends on the content contributed by its users. In this paper, they
represent user activity as time series and perform an initial analysis of these time series to
obtain a better understanding of the underlying mechanisms that govern their creation. For
this purpose nonlinear modeling via recurrence plots was used, which gives more granular
study and deeper understanding of nonlinear dynamics of governing activity of time series
and explaining the activity in online collaboration websites.

Taking to the account studies on network analysis we can notice different papers on this
topic [22-24]. Di Francesco Maesa et al. [22] have performed on the users’ graph inferred
from the Bitcoin blockchain, dumped in December 2015, so after the occurrence of the
exponential explosion in the number of transactions. Researchers first present the analysis
assessing classical graph properties like densification, distance analysis, degree distribution,
clustering coefficient, and several centrality measures. Then, they analyze properties strictly
tied to the nature of Bitcoin, like rich-get-richer property, which measures the concentration
of richness in the network. Alexandre Bovet et al. [23] analyzed the evolution of the network
of Bitcoin transactions among users and built network-based indicators of Bitcoin bubbles.

In this article [24], authors consider the history of Bitcoin and transactions in it. Using
this dataset, they reconstruct the transaction network among users and analyze changes in the
structure of the subgraph induced by the most active users. Their approach is based on the
unsupervised identification of important features of the time variation of the network.
Applying the widely used method of principal component analysis to the matrix constructed
from snapshots of the network at different times, they show how changes in the network
accompany significant changes in the price of Bitcoin.

Separately, it is necessary to highlight the work of Didier Sornette [25, 26], who built a
precursor of crashes based on the generation of so-called log-periodic oscillations by the pre-
crashing market. However, the actual collapse point is still badly predicted.

Thus, construction of indicators — precursors of critical and crash phenomena in the
cryptocurrency market remains relevant.
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Data

Bitcoin, despite its uncertain future, continues to attract investors, crypto-enthusiasts,
and researchers. Being historically proven, popular and widely used cryptocurrency for the
whole existence of cryptocurrencies in general, Bitcoin began to produce a lot of news and
speculation, which began to determine its future life. Similar discussions began to lead to
different kinds of crashes, critical events, and bubbles, which professional investors and
inexperienced users began to fear. Thus, we advanced into action and set the tasks:

(1). Classification of such bubbles, critical events and crashes.

(2). Construction of such indicators that will predict crashes, critical events in order to
give investors and ordinary users the opportunity to work in this market.

At the moment, there are various research works on what crises and crashes are and
how to classify such interruptions in the market of cryptocurrencies. Taking into account the
experience of previous researchers [26-30], we have created our classification of such leaps
and falls, relying on Bitcoin time series during the entire period (16.07.2010 — 08.12.2018) of
verifiable fixed daily values of the Bitcoin price (BTC) (https://finance.yahoo.com/
cryptocurrencies).

For our classification, crashes are short, time-localized drops, with strong losing of price
per each day, which are formed as a result of the bubble. Critical events are those falls that
could go on for a long period of time, and at the same time, they were not caused by a bubble.
The bubble is an increasing in the price of the cryptocurrencies that could be caused by
certain speculative moments. Therefore, according to our classification of the event with
number (1, 3-6, 9-11, 14, 15) are the crashes that are preceded by the bubbles, all the rest -
critical events. More detailed information about crises, crashes and their classification in
accordance with these definitions is given in the Table 1.

Accordingly, during this period in the Bitcoin market, many crashes and critical events
shook it. Thus, considering them, we emphasize 15 periods on Bitcoin time series, whose
falling we predict by our indicators, relying on normalized returns and volatility, where
normalized returns are calculated as

g(t)=In X(t+At)—In X (£)= [X (e + At)— X ()] X (2). (1)
t+n-1

1
and volatility as V;(#) = " Z |g (¢ ')| . Besides, considering that g(t) should be more than the

+ 30, where sigma is a mean square deviation.

Calculations were carried out within the framework of the algorithm of a moving
window. For this purpose, the part of the time series (window), for which there were
calculated measures of complexity, was selected, then the window was displaced along the
time series in a one-day increment and the procedure repeated until all the studied series had
exhausted. Further, comparing the dynamics of the actual time series and the corresponding
measures of complexity, we can judge the characteristic changes in the dynamics of the
behavior of complexity with changes in the cryptocurrency. If this or that measure of
complexity behaves in a definite way for all periods of crashes, for example, decreases or
increases during the pre-crashes period, then it can serve as an indicator or precursor of such a
crashes phenomenon.

Calculations of measures of complexity were carried out both for the entire time series,
and for a fragment of the time series localizing the crash. In the latter case, fragments of time
series of the same length with fixed points of the onset of crashes or critical events were
selected and the results of calculations of complexity measures were compared to verify the
universality of the indicators.
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Table 1
BTC Historical Corrections. List of Bitcoin major corrections > 20% since June 2011

No Name C(]))rerlzztign B}?icg}in Bsgf;n De((:)/loine, Decéine,
Price, $ | Price, $

I Vs 4 2960 | 14.65 50 15.05
2 1156%1222%1122 33 7.00 427 39 2.73

3 1&'%%’3%%’ 4 13.50 8.00 40 5.50

4 0152%122%1133 8 230.00 | 6836 70 | 161.64
5 %‘g%%%% 15 1237.66 | 54097 | 56 | 696.69
6 %55%2222%111 21 00452 | 13577 | 85 | 768.75
7 ﬁ_g&%ﬂ‘g 64 43202 | 16491 | 62 | 267.11
8 1213'_(())78'_22%1155_ 44 310.44 211.42 32 99.02
9 AL 3 38022 | 30470 | 20 75.52
10 o0 ame: 4 761.03 | 59055 | 22 | 170.48
3 011%11',22%1177_ 8 113541 | 78542 | 30 | 349.99
12 %1%3322%1177 2 128330 | 93970 | 27 | 343.60
13 11%%6722%1177 36 297344 | 191408 | 36 | 1059.36
14 1262112222%1177 7 19345.49 | 13664.96 | 29 | 5680.53
15 536'_1111'3%11%' 14 6339.17 | 378459 | 40 | 2554.58

In the Figure 1 output Bitcoin time series, normalized returns g(¢), and volatility 7, (¢)

calculated for the window size 100 are presented.

From Figure 1 we can see that during periods of crashes and critical events normalized
profitability g increases considerably in some cases beyond the limits +3c . This indicates
about deviation from the normal law of distribution, the presence of the “heavy tails” in the
distribution g, characteristic of abnormal phenomena in the market. At the same time
volatility also grows. These characteristics serve as indicators of critical and collapse
phenomena as they react only at the moment of the above mentioned phenomena and don’t
give an opportunity to identify the corresponding abnormal phenomena in advance. In
contrast, the indicators described below respond to critical and collapse phenomena in
advance. It enables them to be used as indicators — precursors of such phenomena and in order
to prevent them.
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Fig. 1. The standardized dynamics, returns g(t), and volatility V., (t) of BTC/USD daily

values. Horizontal dotted lines indicate the 3o borders. The arrows indicate the beginning
of one of the crashes or the critical events

Quantum econophysics indicators

The attempts to create an adequate model of socio-economic critical events, which, as it
has been historically proven, are almost permanent, were, are and will always be made.
Actually, it 1s a super task impossible to solve. However, the potentially useful solutions, local
in time or other socio-economic logistic coordinates, are possible. In fact, they have to be the
object of interest for a real and effective economic science.

Econophysics is a young interdisciplinary scientific field, which developed and acquired
its name at the end of the last century [31]. Quantum econophysics, a direction distinguished
by the use of mathematical apparatus of quantum mechanics as well as its fundamental
conceptual ideas and relativistic aspects, developed within its boundaries just a couple of
years later, in the first decade of the 21st century [32-36].

According to classical physics, immediate values of physical quantities, which describe
the system status, not only exist, but can also be exactly measured. Although non-relativistic
quantum mechanics doesn’t reject the existence of immediate values of classic physical
quantities, it postulates that not all of them can be measured simultaneously (Heisenberg
uncertainty ratio). Relativistic quantum mechanics denies the existence of immediate values
for all kinds of physical quantities, and, therefore, the notion of system status seizes to be
algoristic.

In this section, we will demonstrate the possibilities of quantum econophysics on the
example of the application of the Heisenberg uncertainty principle and the Random Matrices
Theory to the actual and debatable now market of cryptocurrencies.

Heisenberg uncertainty principle and economic analogues of basic physical
quantities

In our paper [34] we have suggested a new paradigm of complex systems modeling
based on the ideas of quantum as well as relativistic mechanics. It has been revealed that the
use of quantum-mechanical analogies (such as the uncertainty principle, notion of the
operator, and quantum measurement interpretation) can be applied to describing socio-
economic processes. Methodological and philosophical analysis of fundamental physical
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notions and constants, such as time, space and spatial coordinates, mass, Planck’s constant,
light velocity from the point of view of modern theoretical physics provides an opportunity to
search of adequate and useful analogues in socio-economic phenomena and processes.

The Heisenberg uncertainty principle is one of the cornerstones of quantum mechanics.
The modern version of the uncertainty principle, deals not with the precision of a
measurement and the disturbance it introduces, but with the intrinsic uncertainty any quantum
state must possess, regardless of what measurement is performed [35, 36]. Recently, the study
of uncertainty relations in general has been a topic of growing interest, specifically in the
setting of quantum information and quantum cryptography, where it is fundamental to the
security of certain protocols [37-39].

To demonstrate it, let us use the known Heisenberg’s uncertainty ratio which is the
fundamental consequence of non-relativistic quantum mechanics axioms and appears to be

(e.g. [40]):

h
Ax-Av>——o) 2
o @
where Ax and Av are mean square deviations of x coordinate and velocity v corresponding
to the particle with (rest) mass m,, 7 — Planck’s constant. Considering values Ax u Av to be

measurable when their product reaches its minimum, we derive (from (1)):
=, G)
2-Ax-Av
1.e. mass of the particle is conveyed via uncertainties of its coordinate and velocity — time
derivative of the same coordinate.

Economic measurements are fundamentally relative, are local in time, space and other
socio-economic coordinates, and can be carried out via consequent and/or parallel
comparisons “here and now”, “here and there”, “yesterday and today”, “a year ago and now”
etc.

Due to these reasons constant monitoring, analysis, and time series prediction (time
series imply data derived from the dynamics of stock indices, exchange rates,
cryptocurrencies prices, spot prices and other socio-economic indicators) becomes relevant
for evaluation of the state, tendencies, and perspectives of global, regional, and national
economies.

Suppose there is a set of K time series, each of N samples, that correspond to the single
distance 7, with an equal minimal time step Af . :

X))t =At, nn=0,12...N-1i=12 ... K. 4)
To bring all series to the unified and non-dimensional representation, accurate to the additive
constant, we normalize them, having taken a natural logarithm of each term of the series.
Then consider that every new series x,(¢,) is a one-dimensional trajectory of a certain

min

fictitious or abstract particle numbered i, while its coordinate is registered after every time
span At ., and evaluate mean square deviations of its coordinate and speed in some time

window AT =AN-At . =AN, 1<<AN << N . The «immediate» speed of i particle at the
moment #, is defined by the ratio:
A, .)—x (¢ 1 X.(¢t
Vi(tn):xl(nﬂ) xl(n): In 1(n+])
At At X.(t,)

)

min min

with variance D, and mean square deviation Av;, .

Keeping an analogy with (1) after some transformations we can write an uncertainty

ratio for this trajectory [40]:
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2
1 < 1n2 Xi(tn+1) >n W < ln Xi(tn+1) >n A Ni, (6)
At X.(t,) ~ X.(t,) ~ m,

min 1
where m, —economic “mass” of an i series, & — value which comes as an economic Planck’s

constant.

Since the analogy with physical particle trajectory is merely formal, / value, unlike the
physical Planck’s constant 7, can, generally speaking, depend on the historical period of
time, for which the series are taken, and the length of the averaging interval (e.g. economical
processes are different in the time of crisis and recession), on the series number i etc. Whether
this analogy is correct or not depends on particular series’ properties.

In recent work [40], we tested the economic mass as an indicator of crisis phenomena
on stock index data. In this work we will test the model for the cryptocurrency market on the
example of the Bitcoin [41].

Obviously, there is a dynamic characteristic values m depending on the internal
dynamics of the market. In times of crashes known marked by arrows in the Figures 2(a) and
2(b) mass m is significantly reduced in the pre-crash and pre-critical periods.

| - "
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Fig. 2. Dynamics of measure m for local crashes (a) and critical events (b)

Obviously, that the value of m remains a good indicator-precursor even in this case.
Value m 1s considerably reduced before a special market condition. The market becomes
more volatile and prone to changes.

The following method of quantum econophysics is borrowed from nuclear physicists
and is called Random Matrix Theory.

Random Matrix Theory and quantum indicators-predictors

Random Matrix Theory (RMT) developed in this context the energy levels of complex
nuclei, which the existing models failed to explain (Wigner, Dyson, Mehta, and others [44-
46]). Deviations from the universal predictions of RMT identify system specific, nonrandom
properties of the system under consideration, providing clues about the underlying
interactions.

Unlike most physical systems, where one relates correlations between subunits to basic
interactions, the underlying “interactions” for the stock market problem are not known. Here,
we analyze cross correlations between stocks by applying concepts and methods of random
matrix theory, developed in the context of complex quantum systems where the precise nature
of the interactions between subunits are not known.

RMT has been applied extensively in studying multiple financial time series [47-53].
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Special databases have been prepared, consisting of cryptocurrency time series for a
certain period of time. The largest number of cryptocurrencies 1047 contained a base of 456
days from 31.12.2017 to 15.09.2018, and the smallest (24 cryptocurrencies) contained a base
of 1567 days, respectively, from 04.08.2013 to 15.09.2018 (https://coinmarketcap.com/
all/views/all/). In order to quantify correlations, we first calculate the logarithmic return (1) of
the i cryptocurrencies price series over a time scale Az =1 day. We calculate the pairwise
cross-correlation coefficients between any two cryptocurrencies returns time series. for the
largest database, a graphical representation of the pair correlation field is shown in the Figure
3a. For comparison, a map of correlations of randomly mixed time series of the same length is

shown in Figure 3b.
1 1000 L
800
05 o 0.5
g, 600
Z
0 S 400
0
200
-0.5

1047

200 400 600 800 1000 200 400 600 800 1000
crypto crypto
a) b)

Fig. 3. Visualization of the field of correlations for the initial (a) and mixed (b) time series

For the correlation matrix C we can calculate its eigenvalues, C=UAU", where U
denotes the eigenvectors, A is the eigenvalues of the correlation matrix, whose density f.(1)

is defined as follows, f %\/ dn )‘ / TR 1s the number of eigenvalues of C that are
less than A. In the limit N -0, T'—>o and Q:%zl fixed, the probability density

function f,(4) of eigenvalues A of the random correlation matrix M has a close form:

J( A=)

A (7)
Jo(A)= P
with Ae[A . A |, where A™ is given by A =0 ( +1/Qi21/1/Q) and o’ is equal to

the variance of the elements of matrix M.
We compute the eigenvalues of the correlation matrix C, 4, =4, >4, >..> 4, =4, .

The probability density functions (pdf) of paired correlation coefficients ¢, and eigenvalues

A, for matrices of 132, 312, and 458 cryptocurrencies are presented in Figure 4. From Fig. 4a,

it can be seen that the distribution functions for the paired correlation coefficients of the
selected matrices differ significantly from the distribution function. described by the RMT. It
can be seen that the crypto market has a significantly correlated, self-organized system
(Fig. 4a) and the difference from the RMT of the case, the correlation coefficients exceed the
value of 0.6-0.8 on “thick tails”. The distribution of the eigenvalues of the correlation matrix
also differs markedly from the case of RMT In our case, only one-third of its own values refer
to the RMT region.

11
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Fig. 4 Comparison of distributions of the pair correlation coefficients (a) and eigenvalues of
the correlation matrix (b) with those for RMT

Eigenvectors correspond to the participation ratio PR and its inverse participation ratio
IPR " = zl]\; [ulk ]4 , where u/, [ =1,...,N are the components of the eigenvector u* (Fig. 5a).

So PR indicates the number of eigenvector components that contribute significantly to that
eigenvector. More specifically, a low IPR indicates that cryptocurrency contribute more
equally. In contrast, a large IPR would imply that the factor is driven by the dynamics of a
small number of cryptocurrencies. The irregularity of the influence of the eigenvalues of the
correlation matrix is determined by the absorption ratio (AR), which is a cumulative risk

measure AR, = ZZ:] A / ZL A, and indicates which part of the overall variation is described

from the total number N of eigenvalues.

In Figure 5, within the framework of the algorithm of a moving window, comparative
calculations of the distribution function of eigenvalues (b), IPR (c) and some measures of
complexity (d) are presented. The difference in dynamics is due to the peculiarities of non-
random correlations between the time series of individual assets. Under the framework of
Random Matrix Theory, if the eigenvalues of the real time series differ from the prediction of
RMT, there must exists hidden economic information in those deviating eigenvalues. For
cryptocurrencies markets, there are several deviating eigenvalues in which the largest
cigenvalue A reflects a collective effect of the whole market. As for PR the differences

from RMT appear at large and small A values and are similar to the Anderson quantum effect
of localization [54]. Under crashes conditions, the states at the edges of the distributions of
eigenvalues are delocalized, thus identifying the beginning of the crash. This is evidenced by
the results presented in Figure 5 (c).

We find that both 4, and PRA_ , have large values for periods containing the

cryptomarket crashes and critical events. At the same time, their growth begins in the pre-
crashes periods. Means, as well as the economic mass, they are quantum precursors of crashes
and critical events phenomena.

Conclusions

Consequently, in this paper, we have shown that monitoring and prediction of possible
critical changes on cryptocurrency is of paramount importance. As it has been shown by us,
the theory of complex systems has a powerful toolkit of methods and models for creating
effective indicators-precursors of crashes and critical phenomena. In this paper, we have

12
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explored the possibility of using the quantum measures of complexity to detect dynamical
changes in a complex time series. We have shown that the measures that have been used can
indeed be effectively used to detect abnormal phenomena for the time series of Bitcoin.

10°
° ° 132
. e 312
-1 L F] 9 458
oz 10 ? RMT
— &
‘ q
10
o
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— g
2000 o
&
1000
10° 0 win
A
C) d)

Fig. 5. Inverse participation ratio (a) and moving window dynamics of the eigenvalues
distribution (b), IPR for the initial and mixed (or random) matrices (c). (d) quantum measures
of complexity A_, and its participation ratio. The numerics in the figure indicate the numbers

of crashes and critical events in accordance with the table

We have shown that monitoring and prediction of possible critical changes on
cryptocurrency is of paramount importance. As it has been shown by us, the quantum
econophysics has a powerful toolkit of methods and models for creating effective indicators-
precursors of crisis phenomena. In this paper, we have explored the possibility of using the
Heisenberg uncertainty principle and random matrix theory to detect dynamical changes in a
complex time series. We have shown that the economic mass m, and the largest eigenvalue
A may be effectively used to detect crisis phenomena for the cryptocurrencies time series.

We have concluded though by emphasizing that the most attractive features of the m, A_
and PRA_, mnamely its conceptual simplicity and computational efficiency make it an

excellent candidate for a fast, robust, and useful screener and detector of unusual patterns in
complex time series.
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HNEPEJIBICHUKHN  KPAXIB KPUIITOBAJIIOT HA OCHOBI ITOKA3HUKIB
KBAHTYMHOI EKOHO®I3UKH

Anomauin. Bcmyn. Hecmabinbnicmo 2nobanbHux GiHanco8ux cucmem ma Has8HIiCMb NO2AHO
nepeodayy8anux Kpaxié Ha (QIHAHCOBUX PUHKAX CEIOMAMb NPO KPU3y MEmoOO0N02ii MOOemo6ants,
NPOCHO3VBAHHA MaA [HmMepnpemayii Cy4acHux CoyidibHO-eKOHOMIYHUX peaniti. 1 01068H00 NPUUUHOIO
Yb020 € BUCOKA CKIAOHICMb eKOHOMIYHUX CUCMEM, YMBOPEHUX 3 8eNUKOI KIIbKOCMI 83A€MOOII0YUX
acenmie, 30aMHUX 2eHePYB8aAmuU HOGL 6I1ACMUBOCHE HA PIGHI MAKPOCKONIYHOL KOAEKMUBHOI NOGEOIHKU,
Npos8OM SKOI € MUMOBIIbHE YMBOPEHH NOMIMHUX YACOBUX, NPOCMOPOBUX YU (DYHKYIOHATLHUX
cmpyxkmyp. OOHUM 3 ni0x00i6é 00 KiNbKICHO20 GUMIPIOBAHHS CKIAOHOCIE € MEMOOU, W0 ORUPAIOMbCAL
Ha ananiz nposieie ckaaonocmi cucmemu 1. Ilpueosicuna. Kniouoeoro ioeeto mym € cinomesa npo 3miHy
CKAAOHOCMI cucmemu 00 ma y nepiod KpumuyHozo fAeuwa. Punox xpunmogamiom — HpUukiao
EeKOHOMIYHUX CUCeM, CKAAOHUX 01 npoenoszyeanus. lLle camoopeanizoéana cucmema, 5Ky Y
OinbUWOoCmi BUNAOKIE MOJICHA PO32A0amu ab0 5K CKIAOHY Mepedcy PUHKOGUX daceHmis, abo 5K
iHmezsposanull BUXIOHUL CUSHAL MAKoi Mepexci — uYacoguil psod, HANPUKIad, yYiHu OKpemoi
Kpunmogamomu. J{oCaioxicenHs: KOIU8aHb YiH Ha KPURMOBAIOMY YCKIAOHIOEMbCA 3A80KY HASBHOCHI
bacamvox YUHHUKIE — GKIIOUAIOYU PUHKOBL nonum ma nponosuyilo, oominnutl kypc ooaapa CIIIA,
cmar poHO08020 PUHKY, BNAUE 3NOYUHHOCHI, MIHLOGULL PUHOK TOWO, SIKI 6HOCAMb GUCOKULL PIGeHb
wymy y oaui. 3a paxyHox yvb0eo yiHu HA KPUNMOBAIOMY OEeMOHCMPYIOMb MAKI CKIAOHI 8AACKO
nepeodauy8ami XapaKmepucmuKy siK 0JAMUIbHICMb, HETIHIUHICTb MA HeBUSHAYEHICMb.

Memoro cmammi € po3ensiod 0esKux iHGOPMAMUSHUX Mip CKAAOHOCMI ma adanmayis ix 0/
BUBYEHHA KPUMUYHUX MA KPUZ0GUX AU HA PUHKY KPUNIMOBATION.

Ilposedennsn oocniorncennsn. [si 00CHIONCEHHS BUKOPUCTIAHO YACco8Ull psio Kypcy bimkoiina,
63amozo 3a nepiod 3 16.07.2010 p. no 08.12.2018 p., a maxosc uacosi psou kypcie 1047
Kpunmosamom, essmux 3a nepioo 3 31.12.2017 p. no 15.09.2018 p. Ha ocnosi uacoeoeo psody
bimkotina 0ocnioxcysanacy nogedinka NOKA3HUKA eKOHOMIYHOI macu 00 ma nio0 4ac KpumuyHo2o
asuwa Ha kpunmopunxy. Cucmema Kpunmosaiom 00CIioNHCy8aAIACy 3 BUKOPUCTNAHHAM THCIMPYMEHmMig
meopii eunaokosux mampuyv. AHANIZYEANACH AK 0E3NOCEPEOHbO CaMd MAMPUYs KPOC-Kopersyill
acenmie eKOHOMIYHOI cucmemu, mak i ii noxioui, a came — po3nooil GIACHUX 3HAYEHb MA GIACHI
B8EKMOPU MAMPUYi KpoC-Kopesyii.

Pezynomamu ma eucnoexku. Monimopune ma npoeHo3y8anHs MONCIUGUX KPUIMUYHUX 3MIH HA
PUHKY KPUNMOSBANIOMU MAlOMb Hepuioyepeose 3HAYeHHA. Y cmammi 00CHiOHNCeHo MONCAUBICHb
BUKOPUCTHAHHS K8AHMOBUX MID CKAAOHOCMI OISl GUSGNEHHS OUHAMIYHUX 3MIH V CKIAOHOMY YACOBOMY
paoi. Tlokazano, wo 3acmocosawi 3axo0u OIUCHO MOXNCYMb OVMU eheKmueHo GUKOPUCAHL O
BUSBNIEHHA AHOMANbHUX ABUNY O1A YaAco8UX padie Kpunmosaniom. Ha ocnosi uacosozo psoy bimkoiina
NOKA3aHO, WO MOHIMOPUHE MA NPOSHO3YEAHHA MOJICIUBUX KPUMUYHUX 3MIH KDPUNMOBATIOM €
nepuiouepeogum  3a60anHA  aHanizy.  Jlocnioxceno  MOXNCIUGICMb  BUKOPUCMAHHA — NPUHYUNY
nesusnauenocmi letizenbepea ma meopii URAOKOBUX MAMPUYL 0N GUAGTEHHI OUHAMIYHUX 3MIH Y
CKIAAOHOMY 4dacosomy psaoli. I[loxazano, wo exkoHOMIuHa Maca ma Haubdinbule 61AcCHe 3HAYEHHS
Mampuyi Kpoc-KOpenayiil MoANCymv eheKmueHo UKOPUCO8Y8amuUcs 07 GUSBLEHHS KPU3OBUX SAGULY.
Came exonomiuna Mmaca 3a60AKU KOHYENMYANbHIU NPOCMOMI HOHAMMS Mad O00YUCTIOBANbHI
ehekmuerHocmi € GIOMIHHUM KAHOUOAMOM 05l WBUOKO20 MA HAOIUHO20 MOHIMOPUH2Y He36UYAUHOL
NOBEQIHKU eKOHOMIYHOT cCUCmeMU.

Knrouosi cnosa: xpunmosanoma, OIimKoiH, CKIAOHA cucmema, Mipu CKIAOHOCHI, asapii,
Kpumuuni nooii, CKAAOHI Mepexcl, KeaHmosa eKonogizuka, npunyun Hesusnaverocmi I etizenbepea,
meopis BUNA0K080I Mampuyi, iIHOUKAMOP-RONEPEOHUK.
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